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SUMMARY

Formulas are derived for the fifteen elastlc constants associated
with bending, stretching, twisting, and shearing of plates with closely
spaced integral rivbing in a varlety of configurations and proportions.

In the derivation the plates are considered, conceptually, as more uniform
orthotropic plates gomewhat on the order of plywood. The constants, which
jnclude the effectiveness of the ribs for resisting deformations other
than bending and stretching in thelr longitudinal directions, are defined
in terms of four coefficients a, g, «a', and B', and theoretical and
experimental methods for the evaluatlon of these coefficilents are dis-
cussed, Four of the more important elastic constants are predicted by
these formulas and are compared with test results. Good correlation is
obtained.

INTRODUCTION

Growing interest in integrally stiffened construction, evidenced by
such papers as references 1 and 2 and by the large forging press program
(ref. 3) which will provide facilities for production, emphasizes the
need for information on the structural characteristics of integrally
stiffened plates.

A primary requisite for the prediction of structural characteristics
of plates is a knowledge of thelr elastic constants. In the present
paper, therefore, formulas are derived for the fifteen elastic constants
associated with the bending, stretching, twisting, and shearing of plates
with closely spaced integral ribs running in one or more directions. The
ribbing patterns covered by the formulas are illustrated in figure 1 and
include those considered in reference L, The rib cross section 1s arbi-
trary, although speclal guxiliary formulas are given for the rectangular-
section rib with circular fillets at its base.

S
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The elastlc-constant formulas derived involve four coefficients «,
B, a', PB' for each rib which define the effectiveness of the rib in
reslsting deformations other than simple bending or stretching in its
longitudinal direction. For most purposes a reasonably accurate evalua-
tion of these coefficients is required. Experimental and theoretical
methods of evaluating them are discussed.

As a check on the correctness of the elastic-constant formulas, the
predictions of the formulas for four of the more important elastic con-
stants are compared with experimental data.

The principal symbols used are defined in appendix A.
DEFINITION OF ELASTIC CONSTANTS

7 If the rib spacings are small compared to the plate width and length,
it is plausible, for purposes of studying over-all or average behavior,

to assume that the actual plate may be replaced by an equivalent uniform
orthotropic plate. Figure 2 shows an infinitesimal element of the equiv-
alent plate subjected to bending moments of Intensity My and My,

twisting moments of intensity Mky, stretching forces of intensity Ny

and Ny acting in planes I and II, respectively, and shearing forces of
intensity ny in plane III. The locations of planes I, II, and III are
arbitrary.

The behavior of the element can be described by a set of force-
distortion relationships in which elastic constants appear. Such rela-
tionships are obtainable from reference 5. If deflections due to depth-
wise shear are assumed to be negligible as 1s customary in ordinary plate
“theory, the following equations (egs. (1') to (6') of ref. 5) are obtained:

32w My Hy

— - — 4 - + CyxNy + CxyN 1
2~ 7B, "Dy M Ol + Oty )
A ’ (2)
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N w'
= - - X I L
ex = Codle - Cypdly + 5 -5 W (1)
ey = Cotx - Gty m g kT E)
N
Xy
Xy
2
where é—z and éfz are the curvatures, o is the twist, €4
3" ay2 ox oy

and ¢ are the extensional strains in planes I and II, respectively,
and yxy 1s the shear strain in plane ITI.

According to these equations, fifteen constants are needed to estab-
1ish the force-distortion relationships - namely, two bending stiffnesses
Dy and Dy, a twisting stiffness Dyy, two stretching moduli Eyx and
Ey, & shearing modulus Gyy, two Poisson's ratios py and py associated

with bending, two Polsson's ratios n'y and u'y assoclated with

stretching, four coupling terms Cxx, Cxys ny, and ny assoclated
with bending and stretching, and one coupling term T associated with
twisting and shear. Not all these constants are independent, however,
for, as a consequence of the reciprocity theorem for elastic structures,

Hy = Dyux/Dx and p'y = Ey“'xlEx-

The form in which the force-distortion relationships have Jjust been
given 1s not the most convenient form for some applications, for example,
for buckling calculations. For such purposes a more sultable form 1s
obtained when the first three equations are solved simultaneously for
My, My, and Mxy and these expressions are then used to eliminate My,

My, and My, in the last three equations. The six new force-distortion

equations thus obtalned are

w %W

MX = -Dl(g(ﬁ + ]J.y gy—é + Clle + ClENy (7)
3w 32

M.Y = -De(a—é + My __W + CQle + C22Ny (8)
Yy
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M., = 2D o CicN (9)
Xy X 3x oy + VkNxy 9
2 N
3w %W x M2
€x = Cjp —= + Cop — + —— - — Ny (10)
D% oy B Eo
d%w Bew M1 Ny
€y =Cp =5 *+ Cop = - =Ny + = (11)
ox oy Ep Ep
2 N
Txy = -2Cy 0w + (12)
ox 3y Gy

where uy = Dzux/Dl and up = Epuy /By

Of the fifteen elastic constants appearing in equations (7) to (12),
two, uy and Hys were slso in the original set of force-distortion

equations. The remaining constants (Dy, Do, Dx, Ej, Ep, Gk, wu1,
Hos Ci11> Cio»s Co1, Cop, and Ck) are new. The algebraic relation-
ships between the new and the original elastic constants are given in
appendix B.

METHOD OF ANALYSIS

The analysis is made for a plate with the general pattern of ribbing
shown in figure 3(a), which includes, as special cases, the patterns of
figure 1. A typical repeating element of the plate is indicated by the
short-dashed rectangle in figure 3(a) and is shown three-dimensionally
in figure 3(b).

The analysis is based on the assumption that each of the four rib
segments shown in figure 3(b) may be replaced by three orthotropic sheets
of material parallel to the skin, each one covering the entire area bxby

and each fastened to the skin by means of many hypothetical, perfectly
rigid, infinitesimally small bars imbedded perpendicularly through the
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ckin and sheets (see fig. 4). (The rib is understood to include any
fillet material but no part of the skin.) The properties of the three
substitute sheets are so chosen that one sheet (labeled (:) in fig. 4)
represents only the effectiveness of the rib in resisting stretching and
bending in its longitudinal direction, another (labeled C)) represents
only the effectiveness of the rib in resisting stretching and bending in
its transverse direction, and the third (labeled (3)) represents only
the effectiveness of the rib in resisting shearing and twisting relative
to its longitudinal and transverse directions. (The transverse direc-
tion, as used herein, is the direction in which ty 1s measured, see
fig. 3.) In order for the three substitute sheets to accomplish their
purpose, they are assigned the following properties:

(a) Sheet (i) has a volume equal to that of the rib segment it
replaces, with its center of gravity at the same level as that of the
rib. Its stretching or compressing modulus of elasticity in the direc-
tion of the rib is E and its modulus transverse to the rib is zero.
Tts stiffness per unit width for bending in the direction of the rib
is equal to the bending stiffness of the rib about its centroid divided

by the rib spacing (i.e., by for a y-wise rib, by for an x-wise rib,

and bg for a skew riv, fig. 3(a)), while 1ts bending stiffness in the
direction transverse to the rib is zero. The shearing and twisting
stiffnesses and Poisson's ratlos of the sheet are assumed to be zero.

(v) Sheet (@ has a volume equal to some fraction B of the volume
of the rib segment, with its center of gravity at some distance ol
above the middle surface of the skin. The modulus of elasticity for
stretching or compressing in the direction transverse to the rib is E,
whereas that in the longitudinal direction of the rib is zero. The bending,
shearing, and twisting stiffnesses, and Poisson's ratios for sheet
are all assumed to be zero.

(c) Sheet G@ has a volume equal to some fraction B' of the volume
of the rib segment, with its center of gravity at some distance a'H
above the middle surface of the skin. Its modulus of elasticity for
shearing relative to the longitudinal and transverse directions of the
rib 1s G, whereas its twisting stiffness relative to these two direc-
tions 1s zero, as are the stretching and bending stiffnesses and Polsson's
ratios.

Tt 1s assumed that the hypothetical sheets offer no interference to
one another.

On the basis of the foregoing assumptions, the integrally stiffened
plate has been converted to a more homogeneous plate somewhat on the
order of plywood. The assumption of rigid bars connecting the substitute
sheets and the skin is equivalent to the assumption that material lines
normal to the surface of the plate vefore deformation remain straight
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during deformation. If it is further assumed that these lines remain
perpendicular to the surface of the plate and that the stresses are in
the elastic range, any of the methods used for ordinary isotropic plate
analysis may be readily extended to the present idealized structure.

For the present purpose an energy method is adopted to determine
the six forces and mo%ents necessary to maintain the prescribed uniform
deformations 0 é:E € € —égz—
a b/ ayz) p.¢4 y’ ax ay

, and Txy* The equations

obtained for these forces and moments in terms of the distortions are
put in the form of equations (1) to (6) to yleld formulas for the
original elastic constants or in the form of equations (7) to (12) to
yield formulas for the new elastic constants.

The detalls of the analysis and the derivation of the elastic
constants are presented in appendix C. The formulas obtained for these
constants are presented in the following section and the evaluation of
a, B, a', and p' 1is discussed in two succeeding sections.

FORMULAS FOR ELASTIC CONSTANTS

In this section the formulas are presented for the calculation of
the fifteen elastic constants appearing in equations 1 to 6 and the
thirteen new constants appearing in equations 7 to 12. The formulas
are presented for the most general type of plate considered, which is
11lustrated in figure 3. For plates with one or more sets of ribs
omitted, the formulas also apply when the terms representing the areas
and moments of inertia of the omitted ribs are set equal to zero.

The formulas for the constants in the original force-distortion
equations (1) to (6) are as follows:

2 T 2
22 1, - 22X (E - o) - (I_> o)

It

Dx

I
D, = EH3(—-”) (15)
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R (TuTy - Ts2) - APty (R - o) *(Ry - ) - ASZEKIY@. K)o+ 2 A’;:V LBy - e ) (By - B ) + Ay TRy - Ei)ﬂ
Ay (Taly - 162) + gy Ty (Ex - k1)7 - Ag(Es - 1) Esxy(is - Xg) - 28T Ky - ke) + Ashy(Es - Xr)(iy - Es)ﬂ

E, = EH Y

(16)

—

A Q(Iny -1.9) - ASQAxA.y(Ex- Ke)? (iy - Ks)2- Ag \:ny I o(Xx - ¥g Wiy k) + AyIy(ky -Es)ﬂ

= EH
K ‘L Ax(Taly - 162) + AxhyTe(Ey - kr1)? - As(¥e - kr1) ESIX Eg - kr7) - 2AxTs (Ex - o+ Ashx(¥s - kry){Ex - ks)]

(17)

— Porhy (18)
~ + quy(Tgcy - kHI)
. Ts (19)
T = - 2
152 - a2 - %)
S (20)
Hy =

Aa(TxTy - 152) + Aghxly(x - k1) (R - %) + Mgty Tx(Fy - kr1)(Fy - Ks) + Ay To{ B - k1) (Ey - kr1) -}
A5215<'Es - kI) (Es - kII\) + AsAxAy<Ex - kI) (‘E_\[ - kII)(Ex - Es) (Ey - Es)

- T T AL

a {1ty - 162) + ATy (ix - K1) - Ag(ks - k1) Est(ie - Kp) - 2 To(Ey - %) + Aghy(Kg - 1)(By - k5>]

u'yx =

hs (IxTy - 10) + RehxTy{Fx - kI)( - Fg) + AehyTx(Ey - k11) (% - Ke) + AxhyTs(x - x)(%y - kyy) -

Ag21, (Ea - kl)(i' - kn) +A AxAy[ - kl)(iy - kn-)(i - ia)(iy - Is)
Ae(Tly - Ts 2) + Aty Ty (By - kg)? - A oFs - ky1) EIX(E - kpp) - 2Ta(Ex - Ka) + Aghy(Eg - oy (K - Es)ﬂ

(22)

Yy T
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k, - k
— % Aghy(ky - ;) .
B AxAyk'x - As 5 _ N ng
kI - KSE | : :
1 2A_x " )2 _ “x<_s_2_
Cyx = e s :
EH2 Ix - _— (kx _ B
AS
N
5
AghKy - Ag S> N
sl - % - T2
Aohullx - Ko) _ Mx Q‘n Ay
1 A 5
C= e kg)° - i =5
oo ——(kx - K Ay |
I - —5
AS
.
—
k, - A kg
A MK, - Ag >
__ T Es) ke - xA'y x -
Aghy(y =y kg -
1 KSE 5 )2 1—122-
= AgPhy, e I
e I - 22 - % )
AS
_ E)T
_ - A2ES ASAx(kx - kg .
AAK, - Ag il
- ‘ly AS
k11 - oy R 2)
S Is
1 X —
Cyy = EH® ) _‘f‘_S_A_X(‘ - &) y
Iy - = . )
AS
S
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R | [;(T‘xy N kIIJJ (27)

EH2|_ Ty

The formulas for the constants in the new equations (egs. (7) to (12))
are as follows:

2
Dy = EH’|I, - Ai gx('ﬁx - &,)° (28)
— .z
Dp = EH|I, - — :y(ky -k )° (29)
= Ag _
I
Dy = EH%-?-) (30)
<2
E1 =E —A—s—> (31)
A,
A2
Ep = E) (32)
Gy = EH(A) (33)
_ s
ML = . (34)
up = %xg (35)
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= 2%
Achyky - A"
S S
Cyq = Hlkg - = (36)
Ag
A A Ky - Ko
Cip = H|—= ( ) (37)
Y 2
e s —
_A_sAy@y - Es)j
Ag
B —
T 2%
A-xAyky - AS ks
Cop = HikrT - — (39)
s
C = H(Kygy - Ky77) (ko)
k = ( xy - %I11)
where
E Young's modulus of material, psi
H over-all height of skin plus ribs, in.

The quantities Ag, Tg, Ay, Ay, Ag, and Ay, ky, Ey, kg,
and kyxy, Ix, I,, I, and I, eppearing in equations (13) to (L0)
are defined by the following equations:

A2 - Achy - A2 (41)
Tse = ISKSQ + ASAXAY(EX - Es)(iy - 1?5) (k2)
Ay |b Ay /by  Ay_[b
o1 s, Ml iyl x| s ° feoste !
Ay = > § +—5 + By T + cos 8 + Bg sin™0 +

(43)

B's 2 sin26 cos? '
1+ qu
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t Ay, [by Ay [by Ay [bg
Ay =__l___S+ By x/ y+ y/ + S/ <sinl*e + PBg cosbfe +
l_qu H H
T 2 2 2)
8in<B cos<6 Ll
B's T (4h)

Aws /bs

(sinee c0s20 + PBg sin®B cos26 -

. 2 2 2)
sin“6 cos<6 in
651” (45)
Ay /b Ay /b
W "2+ p) H *20+p) H Y21 +p) H
b

sin28 cos2o + Bs sin26 cos®6 + B's — 1 cos®oe (46)
2(1 + u)

H H s

_ A, /b _ A /D Ay [b. /.
ke = A];X[WXF/I y(kwx) + By WY/ x(ay) + Ws/ s(kw cos™o +

2
BsTs sin*e + B's®'y sin®0 00528] (47)
l+yp
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Awy/ by

_ Ay Jb _ Ay [Ps [
ky = A—ly-[gx _&(IH_Z@X) + T(kwy) + Wé (kws sinue +

4
Bslg cOs™® + B' 'y I

2 s in26 co seeﬂ (“8)
+ M

Ay /b
= _ 1 fhug/Ps o 2 2 2
kg = A-—S T (kws sin“6 cos<8 + By sin 8 cos“8 -
B's®'g 2 5in20 cosee) (49)
1+
= L g 1 Aug[Py @) + e 1 AwyfPx Sy
= we—m— + 1
oAy T ¥e(lr ) E (*'x Y2(L+u) E )
Ayg[Ps ' 1
S/ EW 5in®6 cos?e + BsQs sin26 cos<0 + B'Sa's ———— cos®28
H s 2(1 + p)
(50)
te\3 Iy fby Iy |bs ta
I, = L <_S) + x/ LA 5/3 costo + — 1 5 —ﬁs-(kx)e +
12(1 - u2)\H i85 H 1-4
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Ay [Py _ Ay o _ Ay_ [bg
5 5
Bs(as - Ey)Ecoshe + B’s(a's - y)z(li " s1n°6 coseeﬂ (52)

t\3  Iw /bs . tg,
Ig = m(fs-) + -—ISIT— s1n°0 cos®6 + T _P' 7z f‘(ks)e +
g [Ps

B's(a's - ES)Q(l f ” 51n°6 cosQGH (53)

ta\2 Iy [b t
Ig = 1 (—S) + 4 wS/ S sin2e cos26 + 2 _S(Ew)e +
6(1 + p) H B> 1+ H
A b
x| Oy — 2 AWY/ X

B'xliu H (a'x-LSQ’)Q.P B‘Y1+u H (a'y-EXY)2+

Ay ]b

W I - —
L ﬂ {(kws - kiQ’) 251028 cos?e + Bs(as - kxy)gsinee cos20 +
B's(@'s - Kxy) E g COSQEE]} (54)

—
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where

by, by, bg the spacing of the x-wise, y-wise, and skew ribs, respec-
tively, in.

the angle of skew of the ribbing, deg

H the over-all height of skin plus ribs, in.
tg the thickness of the skin, in.
vl Poisson's ratio for material

Equations (43) to (54) contain the quantities Ay, Awy, and Ay,
wa, Ewy, Ews, and Ty, Iwy, and Ty, which define the areas, loca-

tions of centroids, and moments of inertia of the ribs. For rectangular
ribs with circular fillets, as shown in figure L, these quantities are
given by the equations

~
Ay_[b W \%/ta \| tsl Py t
WYy |1 - ous(—x) (T 28l Mx 28 (55)
L
(“
Ay [b ~JPEN
W, | Px Ty t tal| Wy t
_1L= 1- (1 -o0.03 ) (B)28y ¥ S (56)
H tS. ‘t.wy H tS bx
Ay [y i \2 /b \ | te| bt
_s/__=2 1 - 1-0.1+3—-S-> S_)|8L s S (57)
" tg tWS—JH tg Dg

(Eq. (57) contains a factor 2 to account for the fact that there are two
ribs in the skewed direction - one at an angle +6 to the x-direction
the other at an angle -6 to the x-direction.)
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_ WA\ fte \ta\2| tuy t t
Ky = — l(l - —S> + o.1l+<—1> ( 5 \)(—S) My gs_ + —g (59)
H
2 3/t 21t t
E, -—2 ;(1 - ES_> + O.lh(—%) (i)(fﬁ) Ms 5,15 (60)
s AWS/bS 2 H tg tws H tS bg 2 H
i

Iy, /b . by ta\D
wY/ X - _l_( - E)B + (l - .t_s)(l - kw )2 + 0,01 Tl) __S__. (._S) +
w3 12 H H/\2 y ts ) \twy )\ E
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The values of ky, kyy, and Kyyg depend upon the locations of
the centroids of the forces Ny, Ny, and Ny, respectively, imposed
upon the plate element. (See fig. 2.) For the important case in which

Nx acts in such a plane that 1t produces no curvature é—E and Ny
32 ox
acts In such a plane that it produces no curvature g;g, Cxx and ny

must equal zero (see eqs. 1 and 2) and, therefore,

— 2—- — —
Axhyy - AEs + sty Ky - Ko)
Ag
— 2_. — —
AxhyEy - Ag7Kg + pyhghy(iy - Kg)
e - (65)
II 7 -0
Ag
Similarly, for the case in which ny acts in such a plane that it
produces no twist aaew , T must equal zero and, therefore,
X
k171 = Ky (66)
If Ny and Ny do act in such planes that they produce curvatures
2 2
é—g and ELE, the actual locations of the forces (planes I and II) must
ox

be known if constants (such as Ex, p'y, etc.) which depend upon the
locations of the applied forces are to be evaluated.

EVATLUATION OF o AND B
Experimental Evaluation
The coefficients «, B, @', and PB' occurring in the equations
for the elastic constants express the effectiveness of a rib for resisting

deformations other than bending and stretching in its longitudinal direc-
tion. For the evaluation of o and B for a given set of ribs
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(longitudinal, transverse, or skew) probably sufficient accuracy will
be achieved from a direct experimental measurement with a simple model
having one set of ribs whose cross section and spacing duplicate those
of the ribs for which the coefficients o and P are being sought and
with a value of tg equal to that of the actual plate.

A double specimen of the type shown on the right-hand side of fig-
ure 5 may first be used to evaluate B through a tension test and, then,
one-half of the specimen masy be used to evaluate « through a bending
test, as illustrated on the left-hand side of figure 5. The use of a
double specimen for the stretching test 1s suggested because the symmetry
will eliminate localized bending of the skin between ribs and facllitate
the measurement of over-all strain. Because of the prevention of local-
ized bending, the value of B should be somewhat higher than that which
would be obtained by stretching a single specimen like the one on the
left-hand side of figure 5. However, such an overestimate of p may be
desirable if the actual plate has ribs in more than one direction, because
then the localized curvatures assoclated with one set of ribs will tend
to be reduced by the presence of the other ribs.

The length-to-width ratio of the specimen should be great enough
so that any end grips or heavy end sections will offer negligible resis-
tance to transverse contraction in the stretching test and to the devel-
opment of transverse curvature in the bending test. Furthermore the width
of the specimen should be sufficiently large compared to the rib spacing
so that the percentage of the speclmen subject to shear-lag effects
arising at the rib ends 1s small.

The use of these tests for the evaluation of « and f will now
be described in detail. For ease in discussion, the ribs whose «a and
B are being sought will be assumed to be oriented in the y-direction as
shown in figure 5. After the values of Oy and By have been deter-
mined, however, the subscript y should be changed to x or s 1f,
in the actual plate, the ribs under consideration are oriented in the
longitudinal or skew direction of the plate.

The conditions of the stretching test 1llustrated in the right-hand

P w .
side of figure 5 are — = N,, = 0. Substituting these conditions

a2 2 Y
in equation (10) and making use of equations (31), (41), (43), (4k),
and (45) gives
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4e
]
=

=

1 - u2 H H
Solving for By gives
' _ b N
A
ts Wy [ Px
o, - —L_<x s i H . (68)
J Ay /bx EHEX H t Ay /bx
Y S, 9 (1 2)
- - M
H H - H
. — —
Awy/bx
where, for rectangular ribs with circular fillets, ; is as given

by equation (56).

By using for Ny[EHex in the right-hand side of this equation the

value obtalned in the stretching test, an experimental value of By,
or Byexp’ is obtained (ex is the x-wise strain aversged over at least

one multiple of bx).

The conditions of the bending test illustrated in the left-hand side
of figure 5 are N, = Ny = My = 0. Substituting these conditions in

equation (1) and msking use of equations (13), (19), (42), (%7), (49),
(51), and (53) slives

(69)
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where
Ay [ )
ta )P ta,— / X
- 1 S L S 2 y 2
Tx = 2)<_H—) * 2 _(kx) *P H ( B x)
12(1 - 1 -4
- Gy Awy by
ky = — By
X H
k, =0 ? (70)
=2
uo = S
% =
* 2 2, T 2
IyAs™ - As Ayky
T2 -TIA° - AAAKK
= TRy - AR 5
Solving for Oy gives
¥ s _A A.Yk'y AZY?EYQ . z2._ =
TeAgky + Iszﬁyz—iye - ﬁ Ke \l By A!E /bx} Isa E( 2_ A2Ay'ky2 Isﬁs]I _E(Iy“s? AseA)lea)
ax
ay‘
/'b y/Px
iEH : }ws WanE) - a2, ) .
AWy/bx
where, as before, for rectangular ribs with circular fillets, 3

is as given by equation (56).
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3 Pw
%"
test, and for B, the value obtained from equation (68) permits equa-

>
tion (71) to yield an experimental value of o (% 1s the x-wise
d

curvature averaged over at least one multiple of by ). The quantities

Substituting for My/EH the value obtained in the bending

KPS, Ax, Ay, As, K, I, I are obtained from’equations (41),

(43), (44), (45), (48), (52), and (53), respectively, with
Ay, = Aws = Iy, = st = 0; thus,

2
Rs® = AA, - A
Ay b Ay /b
A Wy | Px A MiyPx T
Ax=_u£+ay_HL— Ay = =+ —5 As=m£.IT
> 2
) lAwy/be (72)
ky = K; Wy
I =£S_+Tﬁ.p‘i I =.___u__._(ts>3
y R W * -2\
~/

where Ewy is as given by equation (59).

Theoretical Evaluation
Accurate theoretical analysis of the situations depicted in figure 5
is difficult. However, it is possible to obtain values of a and B
that underestimate or overestimate the stiffness of the specimens.

An underestimate is obviously obtained by assuming no part of the
rib to be effective in resisting transverse stretching or bending in a
direction transverse to itself. A lower-limit value of B 1s, therefore,

B =P =0 (73)

When B 1s taken as zero they ) immaterial.
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An overestimate is obtained by analyzing the two specimens shown
in figure 5 for their small deformations under the assumption that plane
sections perpendicular to the skin and perpendicular or parallel to the
direction of ribbing remain plane. The results of such an analysis of
the two situations illustrated in figure 5 are as follows:

X sl (74)
EHe o)
X 2 S
(1 - u Je 384 K
bx Ay /bx
14+ L _[H
H tg
for the double specimen on the right-hand side of figure 5, and
My _ 1 (75)
2 t 5 2 ~
g 97V 12(1 - ue}f(i')(E) +
Bx2 by /\tg I/bx

H3

for the single specimen on the left-hand side of figure 5, and where I,
g, and f are geometric properties of segments of length by of the
cross sections shown in figure 5. The letter 1 represents the moment
of inertia of such a segment about its centroid, g is the integral,
taken in the x-direction, of the reciprocal of the local thickness
measured in the z-direction, and f is t52 times a similar integral
of the cube of the reciprocal of the local thickness. When the ribs are
rectangular with circular fillets, these quantities are given by the
following formulas:

2
...E.;.E__XL l_s_q.kw) I b
I/bx l(ts>3+t82 H ts H 2 H Yy N Wy X+
-_H——-X/-— r1
tg\ H

(76)
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g = X . -2 + = 4 g (17)
ts tS tS ts H
by ‘tw Wy, by ftg )\
f=_-—3—'-2—y+—(—)+f' (78)

where g' and f' are functions of the ratio of fillet radius to skin

Ly, /b
thickness plotted in figure 6, and --Ex-é-—-}E is as given by equation (62).
H

The values of Nx/EHex and M'X/EH3 éﬁg obtained from equations (74)

ox
and (75) may be thought of as experimental results snd they may therefore
be substituted in equations (68) and (71) to obtain values of Bur, and
Qyp, corresponding to an overestimate of the stiffness of the specimen.

A lower overestimate of stiffness can be obtained by analyzing, on
- the basis that plane sections remain plane, the single specimen on the

3w
_ _ %

including the localized bending that occurs during stretching. Besides
being more conservative, the resulting values of ay, and BUL would

also be more appropriate if, in the actual plate under considerstion,
there were really only one set of ribs. An upper-limit analysis con-
ducted entirely on the specimen on the left-hand side of figure 5 would
yleld the following expression to be used in place of equation (74):

left-hand side of figure 5 for both Nx/EHex and Mﬁ/EHB and thus

N ' t )
_x . 5/8 - (19)
R R e -
37kt oy Ay [Px
1l + i =

)

“here h 1s &g times the integral, taken over s length by in the
X-direction, of the square of the reciprocal of the local thickness;
for circular-filleted rectangular-sectiqn ribbing,

" lﬂ -
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t r t 2
h = EE - _HX -2 _EX + _HI(E§> + h! (80)
ts tg tg tg H

where h' is plotted in figure 6. Equation (75) would still be used

for MX/EH3 5%’
ox

EVALUATION OF «' AND B’

The coefficlents «' and B', which define the effectiveness of
a rib in resisting twisting and shearing relative to its longitudinal
and transverse directions, are not as readily measured experimentally
nor as readily bounded by an upper limit as o and B, although, of
course, a lower-limit stiffness is obtained by equating pB' to zero.

An gpproximate evaluation of «' and p' may be made by assuming
that the same volume of rib material resists shear as resists transverse
stretching, that is,

B'y = By (81)

and then by computing where this material must be placed (@') in order
to give the proper torsional stiffness as determined with the aid of
reference 6. The computation of «' will now be described in detail.

Consider an element, like the one on the left-hand side of figure 5,
having only y-wise ribbing and subjected to a pure Mgy Iloading. From
equations (3), (15) and (54) one can solve for a'y in terms of the

3w
ox dy

as follows:

measured or computed ratio Mxy/

Myy -1
d%w
3x Jy

Xy




where
A /b
W. X
' Y
_ B'y —% (a‘y)
= (83)
ts By | ox
— + B‘
H J H
Solving for a'y gives
a'y = i_ 1 . H X - i(fﬁ)B (8L)
y H 2(1+ u) ox Oy
EH5 3%
The value of the ratio M to be inserted in the

lo(1 + u) ox dy
above formula can, in the absence of test data, be derived by an adapta-
tion of the method used in reference 6 for computing the torsional stiff-
ness of I-beams and H-beams, which gives

il 4k - P ) -

2(1 + p) Ox Jy

0.105(31)u(t—§-)3(%§> + a(%>h<;—s)3<%> (85)

where d 1is the diameter of the largest circle which can be inscribed
in the cross section at the junction of the rib and skin and can be com-
puted from the formula

i=(l+r:>2+gl<%¥+%%l) )
I‘w
T

-

._.J

2 +
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and a 1s a constant whose value depends on twy/ts and rwy/ts. The

value of & 1s obtainable from figure 7 of reference 6 or, whenever
tw W
E—X 2 0.61 - O.23<€—x>, from the following formula:

S S

I‘w
a = 0.09% + 0.070 —~ (87)
ts

The meanings of the various terms within the parentheses of equa-
1o\ D
tion (85) are apparent: %(?§> represents the contribution of the skin,

considered as an infinite plate, to the twisting stiffness of the waffle;

ta\ [t \ 2 [t5\2( b
l(l - -§>(_X) (_S-) (_ﬁ) i1s similarly representative of the twisting
3 H /\tg ) \HE/ \by

, L
stiffness of the rib; the term with -0.105(£§Z> corrects for the fact

L
that the rib is actually not infinitely deep; and the term with a(-?—)
S

represents the additicnal stiffness due to the fillets. The value 0.105

2by.
is based on the assumption that E——XLZ 2.3; for values of 2bwy/twy
W.
y
less than 2.3, the number 0.105 should be replaced by the number obtain-
able in figure 3 of reference 6 with the abscissa label ©b/n replaced
by the label 2bwy/twy.

COMPARISON OF CALCULATED AND EXPERIMENTALLY MEASURED
VALUES OF ELASTIC CONSTANTS

As a partial check on the theory, experimental measurements were made
of the stretching stiffness Ej1, bending stiffness Dy, shearing stiff-

ness Gk, and twisting stiffness ny of plates with integral ribs running

either longitudinally or transversely (fig. 1(a)) or skewed (fig. 1(e)). .
The procedures used for the measurement of Dx and Dxy were essentially

the same as those described in reference 5 for sandwich plates. The meas-
urements of E1 and Gk were made with long-gage-length resistance-type

wire strain gages mounted in the four corners, or diagonally on the four
sides, of square-tube compression or torsion specimens slmilar to the
square tubes of reference . The compression specimens were tested in the
1,200,000-pound-capacity testis hine and the torsion specimens in the
combined load testing machi structures research lasboratory.




The experimental values obtalned for the stiffnesses are indicated
by the circles in figures 7 and 8. 1In figure 7 the stiffnesses are
plotted against the angle of skew of the ribbing (with 6 = 0° and
0 = 90o corresponding to purely longitudinal and purely transverse
ribbing, respectively) for plates having nominally the same weight., In
figure 8, for a given angle of skew (6 = 45°), the variation of the
elastic constants with skin thickness is plotted. The relatively large
scatter in the test data is due to the fact that the plates used were
sand castings and, hence, had appreciable variations in thicknesses from
one specimen to another and also within each specimen.

For comparison, theoretical values of the four elastic constants
were computed from equations (31), (13), (33), and (15) and are plotted
in figures 7 and 8. The lowest curve in each graph is obtained from
the lower-limit assumption, B = O; the highest curve gives calculated
upper-limit values based on the use of equations (74) and (75) in calcu-
lating o, and  Byr,; the middle (dashed) curve shows the results

obtainable by using for o and B values determined experimentally on
specimens like those in figure 5. In each case it was assumed that

B' = B, and «' was computed from equations (84) and (85). Table I
surmarizes the upper-limit and experimental values of « and £ used
for these calculations.

In general, figures 7 and 8 indicate that the agreement between
calculation and experiment is within the experimental scatter, with the
calculations based on the values Qexp and Bexp gilving the best results.

CONCLUDING REMARKS

On the basis of an idealization of integrally stiffened plates to
more uniform plates resembling plywood, formulas have been derived for
the elastic constants of.the plates with integral ribbing in one or more
directions. Two sets of elastic-constant formulas have been glven, based
on two different forms of the force-distortion equations.

The formulas for the elastic constants involve four coefficients q,
B, a', and B' for each rib which define the effectiveness of the rib
in resisting stretching and bending in its transverse direction, hori-
zontal shearing, and twisting. Experimental means of determining these
coefficlents are discussed, as are theoretical methods of obtaining
values corresponding to lower-limit or upper-limit assumptions regarding
the stiffness of the plate.
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The predictions of the formulas for four of the elastic constants
are compared with experiment and good correlation is obtained when
experimentally determined values (or, in most cases, upper-limit values)
of o and B are used in the formulas for the elastic constants.
Despite experimental scatter, the calculations and experiments agree,
in general, both in magnitude and in regard to trends resulting from
variation in angle of skew of ribbing or in skin thickness.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,

Langley Field, Va., May 26, 1953.
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APPENDIX A
NOMENCLATURE

Plane I is defined as the plane in which Ny acts and in which €y
is measured. Plane II is defined as the plane in which N, acts and in

which €y is measured. Plane ITI is defined as the plane in which Nxy

acts and in which Yxy is measured.

General Symbols

ﬂ
C
Cxx coupling elastic constants associated with bending and
Xy > stretching and defined by the force-distortion equa-

Cyx tions (1), (2), (4), and (5), 1b-1

Cyy J

C N

11 coupling elastic constants associated with bending and

012 stretching and defined by the force-distortion equa-~

Coy tions (7), (8), (10), and (11), in,

Cop

Cx coupling elastic constant associated with twist and
shear and defined by the force-distortion equa-
tions (9) and (12), 1in.

Dy, Dy bending stiffnesses in x- and y-directions, respec-

Dy, Do tively, in-1b

ny, Dy twisting stiffnesses relative to x- and y-directions,
in-1b

E Young's modulus of material, psi

Ey, Ey extensional stiffnesses in x- and y-directions, respec-

Ey, B, tively, 1b/in.

G shear modulus of material, psi

ny shear stiffness of plate in Xy-plane, lb/in.
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My, My

€xr €y

Hxs Hy

By u'%}
His Mo

s 2
resultant bending-moment intensity in x- and

y-directions, respectively, 1b

resultant twisting-moment intensity with regard to
X- and y-directions, 1b

intensity of resultant normal force acting in
x-direction in plane I, 1b/in.

intensity of resultant normal force acting in
x-direction in plane IT, lb/in.

intenslty of resultant shear force acting in x- and
y-directions in plane III, 1b/in.

coordinate, measured parallel to skewed rib, in.

coordinate, measured perpendicular to skewed rib, in.

coupling elastic constant assoclated with twist and
shear and defined by the force-distortion equa-
tions (3) and (6), 1b-1

displacement in z-direction, in.

strain energy, in-1b

coordinate, measured in longitudinal direction, in.

coordinate, measured in transverse direction, in.

coordinate, measured perpendicular to faces of skin, in.

shear strain, with respect to x- anmd y-directions, of
plane III

strain of plane I in x-direction and of plane II in
y-direction, respectively

Poisson's ratio for materisl

Poisson's ratios associated with bending in x- and
y-directions, respectively, and defined by the force-
distortion equations (1), (2), (7), and (8)

Poisson's ratios associated with extenslon in x- and
y-directions, respectively, and defined by the force-
distortion equations (4), (5), (10), and (11)
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Symbols Representing Dimensions

by, by x-wise and y-wise length, respectively, of smallest
repeating unit of plate, in.

bg spacing of skew ribs, equal to bx/sin 8 or by/cos e,
in,

bg rib spacing (measured between center lines of parallel
ribs), in.

by rib depth, H - tg, in.

d diameter of largest clrcle that can be ilnscribed in
cross section at intersection of rib and skin, in.

h, k distance from planes of zero strain to rib centroids,
in.

H over-gll height of rib plus skin, in.

ry radius of fillet, in.

t thickness, in.

0 angle of skewed ribbing, measured from the longitudinal
direction, deg

Symbols Used in Equations for Elastic Constants
a constant used in equations for calculating a'UL
wa, Ay, Ay cross-sectional area (including fillets) of x-wise,
y s y-wise, and skewed ribs (Aws includes area of two

ribs), sq in.

AW general symbol for wa, Awy, or Aws

f, g, h constants used in equations for calculating oy,
and By,

wa, Ty » Iy cross-sectional moment of inertia of x-wise, y-wise,

y S or skewed ribs about their centroids (st is twice

the moment of inertla of a single skeW'rib), in.h
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k1, ki1, KITT

kaJ kwy, kws

11, Yexpr ML

Qyy Qy, Og
x
a'y, a'y, a

y? 5

al

BLLs Pexpr PUL
5)(; By) BS
B

B'yr B'ys B

Bl

exp

dimensionless distance from middle surface of sheet
to planes I, II, and III, respectively, expressed as
fractions of the over-all height H

dimensionless distance from middle surface of sheet
to centroid of x-wise, y-wise, or skewed rib,
expressed as a fraction of the over-all helight H

constants used to locate the effective centroid of a
rib for reslisting bending in its transverse direction

general symbol representing oy,

Qy, Or Og

constants used to locate the effective centroid of a
rib for resisting twisting

general symbol representing a'y, a'y, or a'g

y

constants used to define effectiveness of a rib in
resisting stretching in its transverse direction

general symbol representing By,

By, oF Bg

constants used to define effectiveness of a rib in
resisting shearing

general symbol representing B'y, B'y, or B'g

Subscripts
longitudinal
sheet or skin
transverse
rib (web)

indicate application to skewed, x-wise, or y-wise ribs
or directions

lower limit
upper limit

experimental
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APPENDIX B

RELATTONSHIPS BETWEEN NEW AND ORIGINAL ELASTIC CONSTANTS

The relationships between the new and original elastic constants
are as follows:

D
D, = I—_—’;x—uy D, = Dl(l - uxp,y) (B1)
D, = _ Dy = Do(1 - p.xp.y) (B2)
1 - by
D
Dy = T’q’ Dy = 2Dy (B3)

~
El = Ex
Dy Dy
1 - Ey cxx<l—_m)<cxx + uyny) + ny(l - ux“y) (cyx + p.xCxx)
[
E, -
- Co1 - C11
S e R 22
g
(Bk)

..
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—\

Ey
i L - Ey{}%y(} -Dixuy>(cxy +.“ycyy> +‘ny(ifigﬁ;ﬁ;>(cyy ¥ uxny§]

?
E =
C Cop - wyCio
1+E {012[: D, (1 _u,:xig %2E2 i ]}
/
(B5)
% oy - OB -
1 - 2DyyGyyT2 Dy + C G,
D, Dy \ |
C]_l X.X(l _ uXU'y) + p'xcyx(l - uxuy)
" > (B7)
_fu - By
Dl(l - },Lxu-y)
N,
_ Dy Dy _ C1o - uxloo 8
e C”(l w) ' ”"C“’<l : ww) T k)
Dy Dy Coy - myC11
21T by ""(1 : uxuy> " C“”‘(l - ux“y> > ayrere B
Cop = (B10)
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Ck
Ci = ~DyyT T = - ooy (B11)
‘ u'xEx[En(l -D:wy)(c"x+ by Cye) + cyx(l oy cyx-:- bxCx)! + Bx[C (Cxy* uyCyy) + Cy,((l _szuy> {eyy+ “xcxy‘)‘
HL = uy .
1- ExEu(l_DLuy) (c + Mycyx) ( Dy )(cyx«v uxcnﬂ
(B12)
ol o]
e
J
-
R o e TNt ok Y W R R e
=u'y + 4
1-E Ew(l _Dixpy) (Cor+ myCyy) + Cw(r_%uy)(cyy\* ux%}l
> (B13)

[1_1 “x21_! ral wyCo |
Dl(]. “x“y_J Co2 D2 1- "‘"yl

“ey)| T (Pa(t - ey

1 +EQ{C12[12 o 22_’ C&F& Ibyc]_z—

=,
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APPENDIX C
DERIVATION OF FORMULAS FCOR ELASTIC CONSTANTS

The basic assumptions of the analysis have already been described.
In the derivations that follow, where the word "rib" is used, it will
usually be understood to mean one of the substitute sheets, depending
on which property of the rib is under consideration. Separate deriva-
tions are given for the constants associated with bending and stretching
and those associated with twisting and shear.

Constants Associated With Bending and Stretching

In the derivation of the formulas for the elastic constants asso-
ciated with bending and stretching, an element of the integrally stiffened
plate will be considered; the element has the average prescribed curva-

3w >Pw
tures — and —— and the strains ¢y (measured in some arbitrary

ox

plane which will be referred to as plane I) and €y (measured in some

other arbitrary plane which will be referred to as plane II). The
development of these prescribed deformations requires the application
of moments of intensity My and My and forces of intensity Ny
(acting in plane I) and Ny (acting in plane II). These moments and
forces and the locations of planes I and II are shown in figure 9.

If the stralns are assumed to vary linearly through the thickness
2
of the element, two horizontal planes can be found (in terms of ng’

2
é—%, and ey> in which the x-wise strain and y-wise straln, respec-

oy
tively, are zero. These planes are indicated in figure 10.

€x,

Strains of components of plate.- The longitudinal extensional strains
of the ribs measured at their cross-sectional centroids can be written in
terms of the curvatures and the distance between the rib centroids and
the planes of zero extensional strains. The strains of the x-wise,
y-wise, and skewed ribs are, respectively,

€ = h ng
Wxp, 3 0P

(c1)
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3w
=k 2 ¥ 072
Wyp =43 o (c2)
ey, =hy QEK cos®e + ky 932 sin@ (c3)
s, %2 dy?

where the subscript L denotes longitudinal direction of a rib; the
subscript x, the x-wise rib; the subscript y, the y-wise rib; and the
subscript s the skew rib. The distances h5, kz, hy, and k; are

shown in figure 10.

The transverse stralns of the ribs are as follows:

3Pw
€Uy, = (k2 - osz)a—yﬁ (Ck)
ey, = -(b2 - ayﬂ)ag—w (c5)
JT 3x°
eWST = —(hg - asﬂ)gzg §1n°6 - (k2 - aSH)zsg cos<0 (c6)

The extensional strains of the sheet midplane in terms of the curva-
tures are

ESx i -h2 —a;a 7
82
Esy = "k,a g—w (CB)
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w 3w
The curvatures —= and =— of the element are also the curva-
3x2 dy?
tures of the x-wise and y-wise ribs, respectively. The curvature of the
skew ribs is

2
§2_w = a_w C0529 + é-?% sin28 (09)
852 6x2 oy

The horizontal shear straln in one of the skew ribs, relative to
the longitudinal and transverse directions of the rib, can be written in
terms of the x-wise and y-wise strains at the same level, which in turn
are determined by the x-wise and y-wise curvatures; thus,

2 2

Yy = 2 -(hQ - a’sH)QEI + (ke - a'sﬁ)égl sin 6 cos 6 (c10)
s ox dy

The x-wlse and y-wise ribs have no shear strain.

Expressions for the dimensions h;, hp, hj, ki, kp, and k5.-

In the derivation of equations (Cl) to (C8) and of equation (Cl0), the
assumption was made that the strains varied linearly from the planes of
zero strain. On the basis of the same assumption, expressions are
written for the strains in planes I and II - the planes in which Ny
Ny act and in which ey and €y are measured. These expressions are

H aew
x = (g - kg2 (c11)
2w
ey = -(k - knﬂ)a_2 (C12)
from which
€
= k+H - X (c13)
S
dx2

-
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ky = kpH - _2'; (C1h)

dy

m

Q/

n

By geometry the dimensions hy, h3, ky, and k3 may be written

by = kygH - by (c15)
hs = Ky H - hy (c16)
Ky = ky B - kK (€17)
k3 = Ewa - ky (€18)

where ku H, kg H, Kk, H locate the centroidal axes of the ribs from
W™ THyTr PWg

the center line of the sheet. Substituting for hp and kp from equa-
tions (C13) and (Clk) gives

H

by (Ews - kI>H r X (c19)

P

X (c20)

)
W
i
=
gz
!
A
H
SN
o
+
B
=

ky = (EWS - kII)H + (ce1)

ks = (Ewy - kII)H + 2L (c22)
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Evaluation of strain energy.- The total strain energy of the element
of the integrally stiffened plate can be written as the sum of the strain
energies of its component parts; thus,

bx by bysecd
e CEA, dx + & cy SEAy dy + ey SEAy ds +
wx W. o W. W. ) WS ws

0 L X 0 N 0 L

<
f
N+

VN Ty

by by
2 1 2

€ EBLA dx + = € EB dy +

[) Wy Py 2 _[, "y Py 3

bysech 5
EWST EasAwsds +

byxsech 5
GB' Ay, ds +
o o 7ws p S Ws

N+
o [+

by by
j f (€52+es2+2ueses) £ tgixdy +
) 0 X J X"y/1 -y

b 2 2 2 b s€CH 2 2
Lx a—iemwdx+lfy M)Exwdy+%£x -a—g)Edes+
%2 x 2y \oyf Y s s

b 2.\2 2 \2 : 3
N I l(a W) N (6 W) Lo, Pwdwl Bt
1 > dxdy (c23
2J(-) f x© 5}’2 uaxeayZl-ug )

In equation (C23) the first three terms give the energy of exten-
sion of the ribs in their longitudinal directions, the second three
terms the energy of extension of the ribs in thelr transverse direc-
tions, the seventh term the energy assoclated with the shearing of the
ribs, and the eighth term the energy of extension of the skin. The
next three terms give the energy of bending of the ribs, and the final
term gives the energy of bending of the skin.

no |-

-

Carrying out the integrations of equation (c23), dividing by bxby

to reduce the result to strain energy per unit area, and substituting
the previously derived expressions for the distortions €Wx’ €y s and
: y

so forth gives
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Vl

Ay
EI 1 x kL I
= B:, cost6 + sin®6 +
2\|1 2 S ( Ps

Ay
B's 2 gin®e coseeﬂ €x2 +2 —LQ tg + —%ﬁ(sinQG cos0 +

1-4u 8

2 2 2 2 2 -1
B. 5in“8 cos<6 -~ B' sinecose>’ee + 2 ta(ktTH) +
S S 1+ p Xty 1 - HE S( I )
Aw Ay AW

- Y —35 - by
by(kw kI>H + By 5oy - k) H + o (l'w k1> H cos

+

Bs(as - kI)H sin%e + B'S(oz's - kI) H(l 2 sin®8 00526]

e A ~
E{L -“ug tS(kIIH) + —.;I-SKKWS - kII>H sin29 COSEG +

BS(O!S - kII)H s1n28 cos®9 -

2
2 sin29 coseeﬂ} €x B_W
L

Ay, Ay, A
[l tS+Bx—-i—;+——x+—w§(Sinh9+Bs coste +
1

B's(a's - kII)H(l

_ 2 bx  bg
: 2 2 2 ) 2
sin“8 cos<0 + 2 talksH ) +
e T )] 2 ot vafeon)
A
bs (kw - kI)H sin29 c0526 + Bs( - kI)H sinee cos2o -
5

tion continued on next page)
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- 2 2 D 2w -1
&) S(a s - kI>H(]_ ra— sin“6 cos Bﬂ} Y %2 + 2{1 5 tS(kIIH) +

2 Aty — Ay, [—
Bx —‘;—;‘(ax - kpp)E + %(kwy - kyp)E + _;‘_: IE{WS - kyp)H stno +

L 2 2 2 Pw L
Bs(as - kII)H cos 'O + B's(a's - kII)H(l Py sinc0 cos eﬂ} y ay

I I
ts + —Hé + s coshe +

{7——512 = o - _1u2 ts(kIH)2

Ay

by

—X(ky, - k1)°E + By f%‘%(ay - kI)2H2 + % (Fw, - kp)2HPcose +

sin28 cosEGH}

Bs(as - k;)2H%s1n%0 + B'g(a's - kI)2H2(

Iy 5
2 M t.0 + 98 51n2 cos®0 + —UE  tg(kko H2) +
{mfl-p25 5 7 g 1 -8 (erbrr®)
Ay - —
—g; (kws - kI)(kws - )}Iesi e COS e +

Bs(as - kI)(ozs - kII)H281n26 cos26 -

5'SQ1‘S - kI)(a's - kII)H2(1 f " 51670 cos )] Zig :iw

1 5, Doy, Do o 1 2
{m 'tS + —-Ei + _bs sin™® + 1. u2 tS(kIIH)

Bx A%;(ax - kII)2H2 * %(Rwy B kII)2H2 * Aib% (—kws h kII)QHQSinue *

2
sin2e cos2e] -a-z-‘i)
M by2

(cak)

Ba(®e - kyy) “Hocosto + Bs(a’s - kyp)?HE(yS
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where the identities E]l- = -}— sin 8 and —l- = % cos 6 have been sub-
s

bs by

stituted to simplify the expressions.

Invoking the principle of virtual displacements by differentiating
the energy expression (C24) with respect to each of the strains and

curvatures and dividing by EH or EH? glves the following expressions
for the forces and moments:

v 1 N
dex EH  EH
b Ay [bx Ay [bg ,
= li / By 3;{ + 514 (coshe + Bg sinte +
Ay [Ps
]
B! 2 5in°0 cos°8) | ey + H / sin 8 cos®8 +
51+ S —E®
2 2 2 2 2 ) -1 ts
sin“6 cos“0 - PB' 8in-6 cos<8| e, + d —m— — +
Ps P's T+n y 1. 2§ kg

Ay, [by Ay, [bx Ay s
-—Ii-—(kwx kI) + By .._%/__(a,y - kI)+ Wsé kas - kI) coshe +

Bo(ds - ky)sine + p'g(a's - kI)(l -

t Ay / 8
—=u S 5 | e 2 2
T kII + T (kws kII) sin“6 cos™ @ +

2
Bs(as - kH)sin29 cos?e - E'S(a's— kH)(li " sin°e cosesﬂ g W

(C25)
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v o1 Ty
aey EH EH
Ay fb
t W 5
= a =S 4 S/ (sinze cos®8 + Bs sin8 cos®0 -
1 o H H
- u
A Ay [b
% We[Py  Awy[Px
' 2 2 2 1 S Y
sinecose)e + | — 2 + +
le+u S PN Px —x H
Ay_[bs
5 (sinl*e + Bg cosl*e + B's T f m s1n<6 cosze) €y +
Lt Ay, [bs 7 '
T S of ka - k__[) s1n°8 cos®8 +
1.2 H H s

oy 2 FPw
'Bs(as - kI)sin26 cos<o - B's(a s - kI) (l ra s1n°0 coseejl}}{a? +

t Ay Iby . Ay /bx _
S X - k —L—(ky, -k
.2 H krp + Bx —3 (0 - Kpr) + —h (kW - Krr) *

Ay_|bg —_ I
S}{ kas - kII) sin e +. Bs(as - kII) COS’+9 +

2 .
s1n°0 cosQGE] g 9 (Cc26)
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v 1 _ My
v EH2 EH2
052
1t Ayy [Py
e B B ) s e )

AwsH/bs KEWS - k1) coso + Bs (s - kI)sinl‘LB +

sin 8 cosee;—,
1 -8

SH R_Ew - kI) sin®6 cos®8 + Bs(as - kI) sin®8 cos2o -

I, by . Ivg/bs
H> 1) 1 -

By ﬁ"ﬁ;{/ﬁ(ay - kI)e +—g KEWS - kI)ecosl*e +

Bs(as - ky)2sin*e + p's(a’s - kI)Q(l = sin% COSQQI}H ge_?w +

I bg t
__u__(_t_s_y + WS/ sin20 cos20 + —H _ 25 krkrT +
12(1 - y2)\E i6) 1-p° H

ﬁifi{/_bsﬁkw - kI)(EWS - kII) sin20 cos°9 +

Bs(as - kI)(as - kI:[)sinEe cos®0 -

2
f_ m s1n26 cosaeﬂ}H g—;-g (caT)

B's(a's - kr)(@'s - B1r)(g
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ov'

B

L
3 EH2

WP

tg Ay, /bs

ka - kII) sin26 cos20 +

> 2 2 2
Bs(®s - ky7)sin® cos®e - B'g(a's - kI]"‘)(l+p. S0 cos Gﬂ}ex *

- Ay. Ay /b
{——l _lue EH§ krp + By ];I/by(ax - k) + —wu(kwy - kpy)+

H

Ay_|b "
"SI%—Ska - kry)sin® + (g - kyg)cost 0

sin29 coszeil} { ( 2) H)3 +
12(1 -

Iy /b &
g/ ®s s1n20 cos20 + —HE — Sk krp +
> g I
H3 1-pu

B's(e's - krT)(s—

Awsébs EEWS - kI>(EWS - kH) 1028 c0s28 +
Bs(as - kI)( - k:[I)Si 29 coseo -

sin29 cosze:] 52"'

B's(a's - kI)(a's - kH)(l 2

+
_1 _t§)3 Twy/Px  TWs[®s 1t 2
{12(1 - uQ)(H — 5 o0 b e )
Ay, [y Ay, [bx Aw
Bx —)‘(H/'—(ax = kII>2 + yH/ (kwy - kII + S K-ws - k Sinll'e +

Bs(as - kII) 2cost + ﬁ'S(a'S - kII)Q(lfI-1 s1n°6 cosQGH}H Fw

(c28)
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The equations for Ny, Ny, My, and M, (eqs. (C25) to (C28)) can
be written as

Ny _ 3w 2
= = Axex + Agey + Ax(kx - kp)B st A o (s kH) (C29)
N - v m 2
% = Ae, + Ayey + As(ks - k)H = + Ay(ky - kH)H ay_g (c30)

2

_ E&H‘é - Ax(l-(x _ kI) ex + AS(ES - kI)ey + Ex + Ax(-lzx-- kI)aH -:—xg +

Es + Ag(ks - kp) (K, - krr)|E (c31)

- %Z_ = AS(ES - kII)ex + Ay(E& - kII)ey t

EE°
ES+AS(1: - keg) ( 'kI]]H&'*’[:Iy v (K _kH] a%r

(032)
wvhere Ay, A, and so forth, are given in equations (43) to (54).

In order to 1dentify the desired elastic constants associated with
extension and bending, the foregolng force-distortion relationships,
equations (C29) to (C32), need only to be put into the form of equa-
tions (1), (2), (4), and (5) or (7), (8), (10), and (11).

Constants Assoclated With Twisting and Shearing
The derivation of the formulas for the elastic constants associated

with twisting and shearing is a parallel one to that for the bending and
stretching constants.
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An element of the integrally stiffened plate will be considered
QW
ox dy
(measured in some arbitrary plane which will be referred to as plane III).

These prescribed deformations can be effected by the application of
twisting moments of intensity Mﬁy and shearing forces of intensity ny

(acting in plane III) to the element (see fig. 11).

which has the average prescribed twist and shear straln Yxy

If the horizontal shear strain is assumed to vary linearly through
d%w
Ox Oy

the thickness, the horizontal plane can be found (in terms of

and 7xy) which has zero shear strain. This plane is shown in figure 12.

Strailns of components of plate.- The extensional strains of the
longitudinal and transverse and one of the skew ribs in their longitu-
dinal directions at their centroids are

ewa =0 (c33)
€ =0 (C34)
"y,
c = +h' SFw sin 26 (C35)
wsL Y dy

The transverse strains of the ribs are

EWXT =0 (C56)
€wyT =0 (c37)

- +lnt 3w
EWST _(h o asH) % 3y sin 26 (c38)
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The extensional strains of the sheet are

€5 = O (c39)
€ =0 (cko
Sy )
The twist 882; causes bending of the diagonal ribs. The curvature of
X Oy
one of these ribs is given by
2 2
%W _ . OV gynop (ck1)
Js2 ox Jy

The curvatures of the longitudinal and transverse ribs are zero. The
shear strain in the skin middle surface is given by

7q = -2h' Ci (Ch2)
S 2 d3x

The magnitude of the shear strain of the diagonal ribs is given by

= ' ' BEW
Ty = 2(b'y - o' H)<E L cos 20 (cu3)

The shear strain of the x-wise and y-wise ribs 1s given by

- ' ' 3w
Ty, = -Q(h s -Q xH)ax 5 (Chk)
e i
=-2h's - H Ch
7wy 2( o - Q y )ax dy ( 5)

Expressions for the dimensions h'y and h's.- The following

expressions can be written for the strains in plane IIT (the plane in
which Nyy acts and in which Txy is measured, see fig. 11):

' %W
Yy = _g(h 5 - kIIIH)S;—g; (Cké)
from which
' .17
hig =kl - 3 _a_g.z_" (Ck7)
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By geometry
h'y =ky H - h'y (Cu8)
Substituting for h'ps from equation (Ck7) gives
h'y = (ky, - k )H + 1 v (cu9)
1- - UIII
s 2 P
3x oy

Evaluation of strain energy.- The total straln energy can be
written as

1 b[bxsece o 1 bxsecd o
U== € BA,; ds + = € EB.A,; ds +
2 Jg Wg Ws 2 Wsm Ps Ws

0

by by
1 268" ¢A, dx + & 2aat Ay dy +
5 v!; 7wx B'x Wy 5 7Wy B yAwy Yy

bysecd bx [by
2 2
1 f 7y, 08" shyds + % fo , 7S Ctgixay +

0

b 3 bysecb ,. o
* 52"’ 2G ts dxdy+lfx, v EI s (c50)
Bx By 6 2 Jg 32

In equation (C50) the first term gives the energy of extension of
the skewed ribs in their longitudinal directions, the second term the
energy of extenslon of the skewed ribs in their transverse directions,
the next three terms the energy of shearing of the ribs, and the sixth
term the energy of shearing of the skin. The next term represents the
energy of twisting of the skin, and the last term gives the energy of
bending of the skew ribs.

Carrying out the integrations of equation (C50), dividing by byby,
substituting previously derived expressions, and so forth, gives
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u_ .y
b, b

Ay

A
E 1 t l 1 wx 1 1] Y
2[{2(l+u) S+2(l+p)8x‘r>y+2(1+u)ﬁy bx+

Ay [
—'515in°6 cos26 + sin®0 cos28 + B’ 1 cos<28 24
bs Ps Pls i+ ) "Xy

- 1 8" Ay
e 1 - ts(kIIIH) t e P b;( - kppp)E +

Ay Ay_(,—

1 ' Y {0t s 2 2
—— — - k H + —= k. - H si 2] 4] +
A+ Py bx( y - k1) bs{ W - Krrp)¥ 51078 cos

2 2
Bs(ozs - kIII)H sin“0 cos<6 +

' 1 - —_— 2 1 3
B's(a's - krrr)E [;(l ) o8 2:]} Txy ax ay ET+m) 5 *

'8 511026 cos26 2 H)®
A Ay
o) . Wx -k 2H2 2 I! .k 2H2
1+uax 'by( III) 1+ B'y bx( y III) +
Avg i DD s D 2 Pr2 g2 2
—8 - 5] 2] - %]
4 bs{kws kppy) PE°s10%8 cos®e + By (o krry) “H°s1n%0 cos®o +

(C51)

s - o) g ) (2
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Differentiating the energy expression (C51) with respect to each

of the distortions and dividing by EH or EH gives the following
expressions for the forces and moments:

ou' 1 _
a7xy EH

7

1 ts 1 Py ,bY 1 AWy/ ®

2(1+p)'i+2(1+u)6x H 2(l+u)

Ay b
W 5
—%I—Einze cos8 + Bg sin®6 cos0 +

-1

: 1 2 ts
cos<28 + 2| —— 2k +
B's 2(1 + u) , ]} 7xy 2(1 + p) B I

. Ay /b

2(1 + p) P'x

——(@'x - Eppg)+

Ay /bx ’

1 S /S TR
S0+ ) Py TE (@'y - ¥+

H

) ' | _
—-/-——Aws S{EWS - kIII)sin26 cos20 ""55(0‘5 - kIII) s1in®0 cos20 +

C fn 1 2 2
Bla(®'s - kIII)I:E(mY °o® 2%]} o o (©2)
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A
1 tS 1 ' WXIby

—_ = “fa', -k +
n k + Q& x III)
2 2(L+p) B IIT " 21+ u) " * H (

1 1 AWY/ Px

e Py TE )

— 2 29
Awsi!bs{(kws - kIII) sin26 cos26 + Bs (as - kIII) sin“6 cos +

1 2 1 (’0_3_)5 .
B's(@'s - kIII)Em‘m 2"] T T \E + w\E

st/bs

2 ) 2
L 3 sin°6 cos®0 + T+ ® (kIII) +
Ay ' 2
lf " B'x —};ILbz(o"x - kIII) +
Ay b 5
o Py H/ x(a,y - k) ¢

ky, - K171

N A_WSIE{— )2511126 cos0 +
H

2,128 c0c20 +
Bs(as - kIII) sin“@ cos

. 21 20| 4| n Pu (c53)
p's(a's - ¥rr1) Eg(l__'_pj cos 25]} 3x Jy

-
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The equations for Ny, and My (egs. (C52) and (C53)) can be
written as

2

N - 0
EH_}E = A 'yxy + 2A3Q,l k.xy - kIII)H ax gy (0514’)
Myy - ' - 3%
g 2y (kxy - F11r) 7y + I:Iw + byl - kIII)%]H 3 oy (€33)

where A, E%y, and Iy, are given in equations (46), (50), and (5k4),
respectively.
Equations (C54) and (C55) may readily be put into the form of

equations (6) and (3) or (12) and (9) to yield either the original or
the new elastic constants, respectively.
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TABLE 1

VALUES OF «, «a', B, AND p' USED IN THE CALCULATION OF
THE ELASTIC CONSTANTS FOR COMPARISON WITH EXPERIMENTAL

MEASUREMENTS OF Ej, Gy, Dy, AND Dy

by/ts | Oexp o “B'oexp | C B'=BuL | Pexp | PuL
by/bg = 0.2
(a)
1 0.24 0.25 0.45 0.25 0.20 0.5%
2 17 .15 .33 2k .23 45
4 .12 .085 43 31 1k .29
8 .00k .06 .53 A3 A2 .19
by/bg = 0.4
(b)
j F N I—— ———— ————
N [ ———— ————
4 0.1% 0. Lk 0.14
8 | | aeea- ———— ————

8These values, computed from equations (68), (71), (74), (75),
(84), and (85) were used for calculating constants for all configura-
tions given in figures 7 and 8 except those for which 6 = 0° and
8 = 90° (one-way stiffening).

PThese values, computed from equations (68), (71), (75), (79),
(84), and (85) were used for calculating constants for configurations

of figure T having 6 = 0° and 6 = 90°.
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%

(a) Longitudinal or transverse (b) Longitudinal and fransverse

(c) Skewed (d) Skewed plus longitudinal and fronsverse

Figure 1.- Ribbing configurations considered.
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o7

———— e Plane I
——-— Plane I
——eee— Plane Il

Figure 2.- Forces and moments acting on element.

4
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(a) Most genersl pattern of ribbing considered. (Short-dashed lines
enclose typical elemeut.)

X /(
H
W
15
- . _
by
¥
s 4 ! ® RIb centroids
QV

(b) Three-dimensional view of typical element.

Figure 3.- Repeating element of plate with integral, waffle-like stiffening.

_—
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Figure 4.- Comparison of idealized and actual rib-skin combinations.
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Figure 5.- Specimens for evaluation of «a and §B.
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Figure 6.- Values of f',
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1200

800
g,
kips/in,

400

kips/in.

6, degrees
Figure 7.- Calculated and experimentally measured elastic constants for
plates with integral waffle-like stiffening skewed at angles of 18,
having E = 10.7 X lO3 ksi, p = 0.32, and having the following pro-

b b b

portions: N b, il 2, [ 2; in addition, for 6 = 0° or 90°,
tg ty Ty

b b

M _ 0.4 and for O° <8 < 90°, A =o0.2.
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24001 _
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800f gk
Gk) ny,
kips/in, Am—hws
400r 4t ©
©o0
] o
L 1 i L L 1 1 I 1 1 |
o 4 8 0o 4q 8
w
S

Figure 8.- Calculated and experimentally measured elastic constants for
plates having integral, waffle-like stiffening skewed at angles of plus

end minus 45° to the longitudinal direction and having b _ 2, oy 2,
' tw Ty
by _ _ _ 3 _
== 0.2, by =0.21n., E = 10.7 x 107 ksi, u = 0.32.
S

4



64 . — NACA RM L53El3a

Zw
A
My = -t
7 Ny by

51 ng
2 ~ERE

———-—— Plane 1

———-——Plone T

Figure 9.- Forces and moments considered for analysls of bending and
stretching.
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Figure 10.- Dimensions

~———-—— Plone of zero x-wise sirain
—— —— Plane of zero ywise stroin

®  Rib centroids

for analysis of bending and stretching.
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W

'\
3

——---——Plane Il

Figure 11.- Shears and moments considered for analysis of twisting and
shearing.
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\

T =

7
7

L4
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Plane of zevo shear strain

8 Rib centroids

Figure 12.- Dimensions for analysis of twisting and shearing.



